[发明专利]一种基于参数辨识法的电池系统传感器故障诊断方法有效
申请号: | 202011036224.X | 申请日: | 2020-09-27 |
公开(公告)号: | CN111965547B | 公开(公告)日: | 2022-05-13 |
发明(设计)人: | 于全庆;万长江;金毅;王大方;杨博文;董浩崧;郝志伟;张毕;李宪营;秦梦迪 | 申请(专利权)人: | 哈尔滨工业大学(威海);威海天达汽车科技有限公司 |
主分类号: | G01R31/367 | 分类号: | G01R31/367;G01R31/382;G01R31/392;B60L58/10 |
代理公司: | 威海聚睿知识产权代理事务所(普通合伙) 37352 | 代理人: | 宋立国 |
地址: | 264200*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 参数 辨识 电池 系统 传感器 故障诊断 方法 | ||
本发明提供了一种基于参数辨识法的电池系统传感器故障诊断方法。该方法为:首先根据实验构建电池的OCV‑SOC‑容量三维响应面、阈值模型及容量估计模型;然后根据容量估计模型得到的容量值和安时积分法得到的SOC在三维响应面中查找到开路电压OCV的参考值;OCV的估计值则通过在线辨识算法估计得到;再将安时积分法得到的SOC代入阈值模型得到当前SOC时的故障诊断阈值;最后将OCV的参考值和估计值之差作为残差用于残差评价,当残差绝对值超过所设阈值即可判断传感器出现故障。本发明不仅考虑了电池老化和SOC对OCV参考值的影响,还考虑了OCV残差在全SOC区间的差异特性,有效降低了在电池全寿命周期传感器故障诊断的误警率和漏警率。
技术领域
本发明涉及动力电池系统领域,尤其涉及一种基于参数辨识法的电池系统传感器故障诊断方法。
背景技术
动力电池系统作为新能源汽车的能量载体,为确保其安全和高效运行,电池管理系统(Battery management system,BMS)需对系统内的所有可能潜在发生的故障进行及时有效的诊断。因BMS的所有功能均需依赖传感器的采集数据进行各种监控、控制和管理,故传感器故障诊断是BMS的核心任务之一。
目前,传感器故障诊断实际应用较多的是基于解析模型的方法,该方法包括残差生成和残差评价两步,根据残差生成方法的不同又可进一步细分为参数辨识法、状态估计法和等价空间法。由于电池的模型参数是电池解析模型的基础,因此基于参数辨识的方法是传感器故障诊断的优选。基于参数辨识法进行传感器故障诊断的常用思路是:先利用特定实验数据得到电池模型的参数值作为参考值,并将其储存在BMS中。电池实际工作时,通过在线参数辨识方法对实时采集到的电流和电压信号进行处理得到参数的估计值,电池模型参数的参考值和估计值之差可作为残差,通过对比残差和故障诊断阈值来判断传感器是否发生故障。实际上,电池模型参数分为动态特性参数和静态特性参数。两种特性参数都受荷电状态(State of Charge,SOC)和老化等因素影响,且动态特性参数还受充放电电流倍率(Current rate,C)影响,因而静态特性参数更适合用于故障诊断研究。
电池的静态特性参数主要指电池的开路电压(Open circuit voltage,OCV),目前利用OCV生成残差的研究中,OCV的参考值通常是通过安时积分法得到的SOC和BMS存储的OCV-SOC二维非线性关系式联合得到,忽略了OCV和OCV-SOC关系式均受电池老化影响的特性。电池的老化主要体现在容量衰退上,在电池的状态估计研究中,虽然已有研究人员为获取更准确的OCV而建立OCV-SOC-容量的三维响应面模型,但该响应面模型中包含了幂函数项和对数函数项,这限制了电池SOC的范围不能取0和100%及非常接近这两个值的值,此外,响应面模型中对容量的考虑通常是建立容量的二次函数,容量插值精度低,因此,如若采用OCV-SOC-容量的三维响应面模型获取OCV的参考值还需对传统的响应面模型进行改进。除了改进参数参考值以提高残差精度外,目前研究中的残差阈值也存在问题。由于电池模型在不同SOC区间的模型精度不同,进而导致OCV估计精度在不同SOC区间也会存在明显差异,若在整个SOC区间采用恒定单一阈值也将导致部分SOC区间的故障误警率和漏警率高的问题。
因此,如何基于参数辨识法实现电池全寿命周期的传感器故障诊断方法仍是当前的技术难点。
发明内容
本发明的目的在于提出基于参数辨识法的电池系统传感器故障诊断方法。所述方法以电池OCV生成残差,但摒弃利用安时积分法和OCV-SOC二维关系式获取OCV参考值的传统思路,而是充分考虑电池老化对OCV-SOC关系式的影响,通过实验获得不同老化阶段的容量Q及OCV-SOC二维关系式进而建立OCV-SOC-容量三维响应面模型并存储在BMS中。实际应用中,电池SOC仍采用安时积分法获得,而容量可通过容量估计模型获得,然后根据OCV-SOC-容量三维响应面模型获取OCV的参考值。OCV的估计值可通过常用的参数在线辨识算法得到。考虑到OCV估计误差在不同SOC区间的估计精度不同,故本发明还提出一种阈值更新模型,将阈值表达成SOC的函数,当残差超过阈值即可判定传感器出现故障。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学(威海);威海天达汽车科技有限公司,未经哈尔滨工业大学(威海);威海天达汽车科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011036224.X/2.html,转载请声明来源钻瓜专利网。