[发明专利]分光瞳激光共焦CARS显微光谱测试方法及装置有效
申请号: | 201710366654.X | 申请日: | 2017-05-23 |
公开(公告)号: | CN107192702B | 公开(公告)日: | 2020-02-04 |
发明(设计)人: | 邱丽荣;吴寒旭;赵维谦;王允 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G01N21/65 | 分类号: | G01N21/65;G01N21/64 |
代理公司: | 11639 北京理工正阳知识产权代理事务所(普通合伙) | 代理人: | 唐华 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 光谱探测 高空间 分光 分辨 激光 焦点位置 共焦 瑞利 激发 共焦显微技术 显微光谱成像 方法和装置 拉曼散射光 光斑 材料检测 尺寸可控 定位准确 分光系统 光谱测试 核心思想 化学材料 聚焦光斑 快速检测 曲线顶点 生物样品 生物医学 探测技术 显微技术 样品信息 拉曼光 灵敏度 微区 显微 无损 捕获 探测 测量 融合 应用 | ||
本发明属于显微光谱成像探测技术领域,涉及一种分光瞳激光共焦CARS显微光谱测试方法及装置。本发明的核心思想是融合分光瞳激光共焦显微技术与CARS光谱探测技术,采用二向分光系统对瑞利光和CARS光进行无损分离,其中CARS光进行光谱探测,瑞利光进行几何定位。本发明利用分光瞳激光共焦曲线顶点与焦点位置精确对应这一特性,精确捕获和定位激发光斑焦点位置,实现高精度的几何探测和高空间分辨的光谱探测,构成一种可实现样品微区高空间分辨光谱探测的方法和装置。通过结合CARS显微技术,激发出的载有样品信息的拉曼散射光要远强于传统自发拉曼光,且激发时间短,为快速检测生物样品和化学材料提供可能。本发明具有定位准确、高空间分辨、光谱探测灵敏度高和测量聚焦光斑尺寸可控等优点,在生物医学,材料检测等领域有广泛的应用前景。
技术领域
本发明属于显微光谱成像技术领域,涉及一种分光瞳激光共焦CARS显微光谱测试方法及装置,可用于快速检测各类样品的微区反斯托克斯散射(CARS)光谱,可实现高空间分辨的几何成像与探测,可获得高空间分辨的“图谱合一”图像。
技术背景
光学显微镜在生物医学领域和材料科学领域被广泛应用,而随着现代科学的快速发展,对显微成像的要求也从结构成像转向功能成像。1990年,共焦拉曼光谱显微技术的成功应用,极大的提高了探索微小物体具体组织成分及形貌的可能。它将共焦显微技术和拉曼光谱技术相结合,具备共焦显微术的高分辨层析成像特征,又兼有无伤检测和光谱分析能力,已成为一种重要的材料结构测量与分析的技术手段,广泛应用于物理、化学、生物医学、材料科学、石油化工、食品、药物、刑侦等领域。
传统的自发拉曼散射成像技术由于拉曼散射本身特性导致其发射信号极弱,即便用高强度的激光激发,要得到一副对比度好的光谱图像,依然需要很长的作用时间。这种长时间作用限制了拉曼显微技术在生物领域的应用。基于相干拉曼效应的相干反斯托克斯拉曼散射(CARS)过程能够很大程度上增强拉曼信号,从而实现快速检测。相干拉曼效应是通过受激激发的光将分子锁定在振动能级上,这种方法产生的振动信号的强度与激发光的强度成非线性关系,可以产生很强的信号,也称为相干非线性拉曼光谱。它具有很强的能量转换效率,曝光时间短,对样品的损害也比较小,同时它的散射具有一定的方向性,容易与杂散光分离。
相干反斯托克斯拉曼散射(CARS)的产生是一个三阶非线性光学过程,它需要泵浦光、斯托克斯光和探测光。一般而言,为了减少光源的数量,简化过程,常用泵浦光代替探测光,它们之间的关系如图2所示,当泵浦光(wp)和斯托克斯光(ws)的频率之差与拉曼活性分子的振动频率相匹配时,将激发出CARS光was,其中was=2wp-ws。CARS光的产生过程包含特定的拉曼活性分子的振动模式和导致分子从基态至激发态振动跃迁的入射光场的相互作用过程,它的能级示意图如图3所示。图3(a)表示拉曼共振和非共振单光子增强对CARS过程的贡献,图3(b)表示拉曼共振和非共振双光子增强对CARS过程的贡献;当wp和ws之间的频差与拉曼活性分子的振动频率相匹配时,激发出的信号得到共振增强,同时非共振部分也会由于电子跃迁响应得到增强,因此要得到较好的CARS信号,需要尽可能的抑制非共振背景信号,常见的方法是偏振CARS(P-CARS)方法。
P-CARS的原理如图4所示,光源1发出的频率为wp的斯托克斯光,起偏后经过四分之一波片和半波片后与光源2发出的频率为ws的泵浦光(探针光)汇合,经二向分光镜后由反射镜发射至水浸显微物镜,聚焦在样品上,激发出载有光谱特性的CARS光后,透射进入信号采集系统;信号由一个油浸的显微物镜采集,经过一个偏振片过滤非共振背景,然后通过一个滤光片滤除其他谱段的干扰后,被一个雪崩光电二极管所采集,即获得特定频谱的光谱信号。
P-CARS能够很大程度的抑制非共振信号和激发光的干扰,但是由于其采用的是两个单波长激光器,只能获得特定频谱的光谱信息,因此它的广泛使用受到了极大的限制。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710366654.X/2.html,转载请声明来源钻瓜专利网。