[发明专利]一种基于集成学习的深度学习缺陷图像识别方法及系统有效
申请号: | 202110305533.0 | 申请日: | 2021-03-23 |
公开(公告)号: | CN113139932B | 公开(公告)日: | 2022-12-20 |
发明(设计)人: | 刘伟鑫;徐晨;周松斌 | 申请(专利权)人: | 广东省科学院智能制造研究所 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/13;G06V10/774;G06V10/764;G06V10/80;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 广州容大知识产权代理事务所(普通合伙) 44326 | 代理人: | 刘新年 |
地址: | 510070 广东省*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于集成学习的深度学习缺陷图像识别方法及系统。该方案包括获取所有的缺陷监测图像,生成样本训练集和样本测试集;获取样本训练集通过色彩转换、傅里叶变换、梯度运算和边缘轮廓提取,获得灰度图、频谱图、边缘轮廓图和梯度图,生成第一训练集、第二训练集、第三训练集、第四训练集,并融合生成第五训练集;将第一训练集、第二训练集、第三训练集、第四训练集和第五训练集分别进行深度神经网络训练,生成第一分类器、第二分类器、第三分类器、第四分类器和第五分类器;将所述样本测试集中的图像进行投票,获得目标分类结果。该方案通过多训练集、集成学习方式提高网络模型缺陷识别通用性,实现对多类别缺陷图像识别。 | ||
搜索关键词: | 一种 基于 集成 学习 深度 缺陷 图像 识别 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东省科学院智能制造研究所,未经广东省科学院智能制造研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110305533.0/,转载请声明来源钻瓜专利网。
- 上一篇:一种履带吊双机抬吊T梁的吊装方法
- 下一篇:一种高速回流散热式均热板