[发明专利]基于深度学习的硬件木马检测方法有效

专利信息
申请号: 202011173241.8 申请日: 2020-10-28
公开(公告)号: CN112288714B 公开(公告)日: 2022-12-27
发明(设计)人: 张铭津;彭晓琪;郭杰;李云松;孙宸;王力伟 申请(专利权)人: 西安电子科技大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06T7/136;G06T7/194;G06T5/00
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的硬件木马检测方法,主要解决现有方法成本高、漏检率高和效率低的问题。其方案是:采集图像集,并构建两个训练集;采集待检测图像集;用第一训练集对残差通道注意力网络进行训练,用第二训练集对循环一致性生成对抗网络进行训练,将待检测图像集中的显微图像依次送入训练好的残差通道注意力网络和循环一致性生成对抗网络,得到与母版微观图像同源的图像;对与母版微观图像同源的图像及对应的母版微观图像进行增强并对增强后的图像进行二值化分割和去噪;对去噪后图像进行连通区域标记并对其进行异或运算,运算结果为1的区域为硬件木马。本发明检测方精度更高,速度更快,且操作更简易,可用于集成电路芯片的制备。
搜索关键词: 基于 深度 学习 硬件 木马 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011173241.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top