[发明专利]一种基于深度学习的通信信号特征融合方法有效
申请号: | 202010189611.0 | 申请日: | 2020-03-18 |
公开(公告)号: | CN111382803B | 公开(公告)日: | 2022-06-03 |
发明(设计)人: | 杨海芬;胡向东;杨睿;王一冰;周亮;周军 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/00;G06T5/10;G06N3/08 |
代理公司: | 电子科技大学专利中心 51203 | 代理人: | 陈一鑫 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的特征融合方法,涉及电磁信号识别技术领域。首先对目标离散信号进行预处理,使用短时傅里叶变换提取所有数据的功率谱密度P,将功率谱密度P作为通信信号源的特征;再以功率谱密度P作为通信辐射源的特征导入事先训练好的神经网络,完成特征的提取,得到特征P1;其次将目标离散信号分段,求每一段的载频和码元速率相对偏差,将之作为特征P2;最后将提取后的特征P2与特征P1在数量级上对应拼接起来,作为融合特征P3;采用融合特征P3对信号进行识别。与现有技术相比,本发明技术方案的有益效果是:具有更高的识别率,能够准确识别通信信号设备。 | ||
搜索关键词: | 一种 基于 深度 学习 通信 信号 特征 融合 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010189611.0/,转载请声明来源钻瓜专利网。
- 上一篇:合采油井产量劈分新方法
- 下一篇:木柴式锅炉给料系统的带有粉碎功能的给料器