[发明专利]基于深度学习的非视域飞秒成像三维重建方法及装置有效
申请号: | 202010136035.3 | 申请日: | 2020-03-02 |
公开(公告)号: | CN111462299B | 公开(公告)日: | 2022-07-19 |
发明(设计)人: | 戴琼海;张安科;裴承全;乔晖 | 申请(专利权)人: | 清华大学 |
主分类号: | G06T17/00 | 分类号: | G06T17/00;G06T15/20;G06T15/50;G06N3/04;G06N3/08 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 王艳斌 |
地址: | 10008*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的非视域飞秒成像三维重建方法及装置,其中,方法包括以下步骤:建立视域场景的三维模型,利用空间坐标系确定每个离散面片的位置和方向,并且进行视域下高速渲染;对光照场景进行非视域光追渲染;基于数据学习的神经网络架构,以从非视域场到视域场的三维重建扫描。该方法通过神经网络学习视域场和非视域场之间的传递函数,可以在没有过多硬件约束的条件下,将非视域场中采集到的条纹信息重建成为视域信息,从而使用数据而非光学模型对视域场进行重建,有效提高重建的适用性和实用性,简单易实现。 | ||
搜索关键词: | 基于 深度 学习 视域 成像 三维重建 方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010136035.3/,转载请声明来源钻瓜专利网。