[发明专利]基于投影重构和多输入多输出神经网络的坐姿识别方法有效
申请号: | 202010119569.5 | 申请日: | 2020-02-26 |
公开(公告)号: | CN111325166B | 公开(公告)日: | 2023-07-07 |
发明(设计)人: | 沈捷;黄安义;王莉;曹磊 | 申请(专利权)人: | 南京工业大学 |
主分类号: | G06V40/20 | 分类号: | G06V40/20;G06V10/774;G06V10/764;G06V10/20;G06V10/82;G06N3/0464;G06N3/08 |
代理公司: | 南京君陶专利商标代理有限公司 32215 | 代理人: | 严海晨 |
地址: | 210009 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于投影重构和多输入多输出神经网络(MIMO‑CNN)的坐姿识别方法,包括:获取人体上半身深度图像及人体前景轮廓图;预处理;对坐姿轮廓的深度信息进行投影,重构得到三视角深度图;设计用于坐姿识别的MIMO‑CNN网络并学习模型参数;坐姿识别;模型自学习。优点:预处理后深度图像和人体轮廓图进行结合,排除周围背景对坐姿识别的干扰。使用投影重构方法得到三视角深度图,使得坐姿信息更加丰富。所设计的MIMO‑CNN结构,特别适用于投影重构特征信息同时融入了注意力机制,能更好的关注不同坐姿的热点区域,从而提升识别精度,同时采用模型自学习,较好地平衡了实时性和准确性需求,对视角变化和复杂环境背景,具有较强的抗干扰能力。 | ||
搜索关键词: | 基于 投影 输入 输出 神经网络 坐姿 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京工业大学,未经南京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010119569.5/,转载请声明来源钻瓜专利网。