[发明专利]基于深度递归网络下小样本极化合成孔径雷达图像分类方法在审
申请号: | 201911301348.3 | 申请日: | 2019-12-17 |
公开(公告)号: | CN110956221A | 公开(公告)日: | 2020-04-03 |
发明(设计)人: | 张帆;倪军;尹嫱;周勇胜;洪文 | 申请(专利权)人: | 北京化工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/46;G06K9/00;G06K9/46 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 沈波 |
地址: | 100029 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于深度递归网络下小样本PolSAR图像分类方法,本发明借鉴了深度递归网络的复杂性和空间分析的优势,对小样本数据首先进行了特征增强,然后选取0.5%的样本作为训练样本,同时每个点只使用了5个特征序列来作为训练样本。此外,本发明提出了RNBP的样本合成方法类提升训练样本的丰富度,同时提出MB和MBW来提升测试样板的鲁棒性,从而达到小样本较优的分类效果。在深度递归网络的构建中,本发明使用LSTM作为基本的处理单元,每个空间的样本序列对应一个LSTM时间单元,从而使其充分兼顾PolSAR的空间特征,从而实现分类。最后在深度递归网络得到的概率图基础上,利用CRF进行空间纹理分析,以实现最优的小样本决策分类过程。 | ||
搜索关键词: | 基于 深度 递归 网络 样本 极化 合成孔径雷达 图像 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京化工大学,未经北京化工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911301348.3/,转载请声明来源钻瓜专利网。