[发明专利]基于数字孪生的机械设备零部件结构参数动态优化方法有效
申请号: | 201910261337.0 | 申请日: | 2019-04-02 |
公开(公告)号: | CN110045608B | 公开(公告)日: | 2022-04-05 |
发明(设计)人: | 丁华;杨亮亮;王义亮;高俊光;卢川川 | 申请(专利权)人: | 太原理工大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 太原晋科知识产权代理事务所(特殊普通合伙) 14110 | 代理人: | 任林芳 |
地址: | 030024 *** | 国省代码: | 山西;14 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于数字孪生的机械设备零部件结构参数动态优化方法,通过构建高保真模型,在虚拟空间实现物理空间对应设备的数字化镜像,方便后期结构参数修改和超写实仿真;通过进行超写实仿真,在虚拟空间实时动态的同步反映物理空间对应实体的状态,在虚拟空间实现物理设备真实情况的写实运动;同时利用深度学习理论,构建神经网络结构,借助其强大的数字挖掘和映射能力,挖掘建立结构参数和疲劳寿命之间的关系,通过结合高保真模型和超写实仿真环境,实现结构参数的动态优化。通过本发明,实现虚拟空间对物理空间的结构参数的动态优化与反向指导,提高了优化效率和真实性。 | ||
搜索关键词: | 基于 数字 孪生 机械设备 零部件 结构 参数 动态 优化 方法 | ||
【主权项】:
1.一种基于数字孪生的机械设备零部件结构参数动态优化方法,其特征在于,包括:构建机械设备全部或部分结构的三维模型,研究三维模型动力学与运动状态的关联性,确定反映运动状态的参数,并根据参数分析确定机械设备全部或部分结构中所需的传感器类型及安装位置,按照分析结果在物理空间物理实体中布置传感器,通过传感器监测数据驱动虚拟空间参数更新,完成高保真建模;依据物理实体的历史监测数据及物理空间传感器实时更新的监测数据,进行超写实仿真,获取高保真三维模型零件结构参数与对应疲劳寿命数据集作为数据分析样本;构建深度卷积神经网络模型,用高保真三维模型零件结构参数与对应的疲劳寿命数据样本集训练模型,保存训练好的模型;将目标疲劳寿命数据作为预测模型的输入,通过传感器实时监测数据动态更新虚拟空间参数和预测模型动态训练,得到动态优化后的零部件结构参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于太原理工大学,未经太原理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910261337.0/,转载请声明来源钻瓜专利网。