[发明专利]一种通用的基于数据挖掘的机器学习方法、装置以及系统有效

专利信息
申请号: 201711241040.5 申请日: 2017-11-30
公开(公告)号: CN107944721B 公开(公告)日: 2020-09-18
发明(设计)人: 邱一卉;彭彦卿;刘成;苏鹭梅;徐华卿;林晶 申请(专利权)人: 厦门理工学院
主分类号: G06Q10/06 分类号: G06Q10/06;G06Q10/00
代理公司: 厦门智慧呈睿知识产权代理事务所(普通合伙) 35222 代理人: 郭福利;魏思凡
地址: 361024 福*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种通用的基于数据挖掘的机器学习方法、装置以及系统,其方法先以固定频率采集电子设备中不同工作指标的数值,对不同工作指标的数值进行特征选择,得到与电子设备运行状态最贴近的工作指标,将该工作指标的数值作为基础训练数据,计算得到其分组周期,按时间顺序进行分组;随后通过每一基础训练数据的特征值判断故障所在的周期,以故障所在的周期对基础训练数据进行分组,在通过非线性状态评估算法计算两类分组,得到故障阈值,实现了对不同类型电子设备的通用故障检测。
搜索关键词: 一种 通用 基于 数据 挖掘 机器 学习方法 装置 以及 系统
【主权项】:
一种通用的基于数据挖掘的机器学习方法,其特征在于,包括以下步骤,以固定频率采样电子设备的运行工作的每一个工作指标的采样数值,并对每一个工作指标采样到的所有采样数值均组成该工作指标对应的时序序列;对每一个工作指标对应的时序序列进行特征选择,从中确定与所述电子设备运行状态相关度最大的工作指标以及所述相关度最大工作指标序列时域特征值,并以确定的所述最大的工作指标对应的采样数值为基础训练数据;根据所述基础训练数据的时序特征量计算出分组周期,并以所述分组周期对所述基础训练数据进行分组,并根据时间顺序确定每一组的序号;通过计算每一基础训练数据组的序列时域特征值,判断该基础训练数据组是否属于故障所在组,并记录故障所在组的组序号;根据故障所在组的组序号,按时间顺序将分组后的基础训练数据组划分成训练样本组和测试样本组;其中,所述训练样本组包括的每一基础训练数据组均不属于故障所在组;所述测试样本组包括至少一个基础训练数据组是故障所在组;根据非线性状态评估算法,对训练样本组中的每一基础训练数据组进行计算获得故障阈值;根据所述故障阈值,判断在所述测试样本组中判定为存在故障的基础训练数据组的组序号是否与记录的组序号是否一致;若是,则以所述故障阈值作为判定所述电子设备运行是否存在故障的标准工作指标。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门理工学院,未经厦门理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711241040.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top