[发明专利]一种结合DAE和CNN的脑电信号特征提取与分类方法有效
申请号: | 201710993587.4 | 申请日: | 2017-10-23 |
公开(公告)号: | CN107844755B | 公开(公告)日: | 2021-07-13 |
发明(设计)人: | 唐贤伦;刘雨微;林文星;昌泉;杜一铭;魏畅 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/40;G06K9/62;G06N3/04;G06N3/08;A61B5/369 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 刘小红 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明请求保护一种结合降噪自动编码机和卷积神经网络的脑电信号特征提取与分类方法,该方法包括步骤:通过脑电信号采集仪采集脑电数据;对采集到的数据进行去除异样样本、去均值、信号滤波等预处理;使用加入噪声系数的自动编码机对脑电信号进行训练;将降噪自动编码机的隐含层作为特征数据输出;再将所得特征数据转化为类似图像格式;利用卷积神经网络进行分类;最后利用测试数据集对训练好的网络进行性能测试。本发明相对其余传统方法能够获得更高的分类准确率,更强的鲁棒性。 | ||
搜索关键词: | 一种 结合 dae cnn 电信号 特征 提取 分类 方法 | ||
【主权项】:
一种结合DAE和CNN的脑电信号特征提取与分类方法,其特征在于,包括以下步骤:1)、通过脑电信号采集仪采集脑电数据;2)、对采集到的数据进行包括去除异样样本、去均值、信号滤波在内的预处理;3)、使用加入噪声系数的降噪自动编码机DAE对经过步骤2)预处理后的脑电信号进行无监督训练;4)、将降噪自动编码机DAE的隐含层的数据提取出来并加入步骤1)的原始脑电数据,形成新矩阵,将得到的新矩阵数据转化为图像数据格式作为卷积神经网络的输入数据;5)、利用卷积神经网络CNN进行训练分类;最后利用测试数据集对训练好的网络进行性能测试,输入测试数据集,将输出值与左右手标签对比,得到运动想象脑电信号的分类准确率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710993587.4/,转载请声明来源钻瓜专利网。