[发明专利]一种基于深度残差网络的手势识别方法在审

专利信息
申请号: 201710174418.8 申请日: 2017-03-22
公开(公告)号: CN106991386A 公开(公告)日: 2017-07-28
发明(设计)人: 谢益峰;颜成钢;王雁刚;邵碧尧;项露萱 申请(专利权)人: 杭州电子科技大学
主分类号: G06K9/00 分类号: G06K9/00;G06F3/01;G06K9/62;G06K9/46;G06N99/00
代理公司: 杭州君度专利代理事务所(特殊普通合伙)33240 代理人: 杜军
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度残差网络的手势识别方法。本发明步骤包括步骤1.获取手势的原始数据信息,并将其进行N点标记得到2N维的原始标签数据;步骤2.对原始数据信息及2N维的标签数据进行预处理;步骤3、将预处理后的原始数据信息与转化为hdf5格式的2N维的原始标签数据作为原始训练数据,输入到深度残差网络中训练网络参数,得到手势识别模型;步骤4、将待识别手势数据做与步骤1相同的N点标记得到2N维的待识别标签数据;步骤5、对待识别手势数据及2N维的标签数据进行预处理,并将预处理后的手势数据与转化为hdf5格式的2N维的待识别标签数据,输入到上述手势识别模型中进行识别,得到识别结果。本发明有效解决梯度弥散和网络精度问题。
搜索关键词: 一种 基于 深度 网络 手势 识别 方法
【主权项】:
一种基于深度残差网络的手势识别方法,其特征在于包括如下步骤:步骤1.获取手势的原始数据信息,并将其进行N点标记得到2N维的原始标签数据;其中N≥1;步骤2.对上述原始数据信息及2N维的标签数据进行预处理;步骤3、将上述预处理后的原始数据信息与转化为hdf5格式的2N维的的原始标签数据作为原始训练数据,输入到深度残差网络中训练网络参数,得到手势识别模型;步骤4、将待识别手势数据做与步骤1相同的N点标记得到2N维的待识别标签数据;步骤5、对上述待识别手势数据及2N维的标签数据进行预处理,并将预处理后的手势数据与转化为hdf5格式的2N维的待识别标签数据,输入到上述手势识别模型中进行识别,得到识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710174418.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top