[发明专利]一种基于卷积神经网络的多类障碍物检测与识别方法在审
申请号: | 201611137636.6 | 申请日: | 2016-12-09 |
公开(公告)号: | CN106599832A | 公开(公告)日: | 2017-04-26 |
发明(设计)人: | 李鹏华;何春燕;米怡;刘太林;黄智宇;徐洋 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/32;G06K9/34;G06K9/62;G06T7/277 |
代理公司: | 北京同恒源知识产权代理有限公司11275 | 代理人: | 廖曦 |
地址: | 400065 *** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于卷积神经网络的多类障碍物检测与识别方法,属于计算机视觉与目标检测技术领域。该方法将车载视频转换为图片帧,应用类间方差法以及形态学操作从图片帧中提取得到ROI以及其在原图像中的位置信息,将提取得到的ROI放入AlexNet网络中进行分类,与此同时,由卡尔曼滤波根据分类得到的障碍物的位置信息进行状态估计,实现实时的障碍物检测与识别。本发明提取图像本身与图像间的多种特征,提高了障碍物检测与识别的精度;将障碍物的属性、运动趋势等信息设置到整个检测与识别系统中,对于驾驶员或者智能车的安全行驶起到了至关重要的作用,为未来全智能化的驾驶系统保驾护航。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 障碍物 检测 识别 方法 | ||
【主权项】:
一种基于卷积神经网络的多类障碍物检测与识别方法,其特征在于:该方法包括以下步骤:S1:采集车载视频,包括由车载摄像机、行车记录仪、手持摄像机拍摄的车载视频,作为原始样本;S2:将采集到的车载视频进行视频分帧处理,将视频转换为连续的单帧图片;S3:应用自动图像分割提取方法提取单帧图片的ROI(region of interest,感兴趣区域),并标记ROI区域在原始图片中的相对位置信息,此处提取的ROI信息即为障碍物信息;S4:将提取好的ROI样本库放入AlexNet(Alex网络结构模型)中进行分类识别,实现障碍物的分类辨识,与此同时,根据ROI在原始图片中的位置信息应用卡尔曼滤波进行目标跟踪,实现对障碍物的实时跟踪与状态估计;S5:根据上述步骤,将原始视频直接放入训练调试好的卷积神经网络中进行测试,实现直接输入视频的对多类障碍物的实时检测与识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611137636.6/,转载请声明来源钻瓜专利网。