[发明专利]一种交通流量短时预测装置有效
申请号: | 201610523003.2 | 申请日: | 2016-06-29 |
公开(公告)号: | CN106157616B | 公开(公告)日: | 2018-11-06 |
发明(设计)人: | 不公告发明人 | 申请(专利权)人: | 南京新立讯科技股份有限公司 |
主分类号: | G08G1/01 | 分类号: | G08G1/01;G08G1/065;G06Q10/04 |
代理公司: | 北京华识知识产权代理有限公司 11530 | 代理人: | 吴强 |
地址: | 210012 江苏省南京市雨花*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明一种交通流量短时预测装置,包括数据恢复模块和预测装置,所述预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块。本发明预测精度较高且构造的预测模型更有针对性。 | ||
搜索关键词: | 一种 交通 流量 预测 装置 | ||
【主权项】:
1.一种交通流量短时预测装置,包括数据恢复模块和预测装置,所述数据恢复模块通过以下步骤对交通流量数据进行恢复:(1)将检测点由车辆检测器检测得到的原始交通流量数据qorig单位换算成标准小时流量数据,然后对该标准小时流量数据进行加权平均转换成固定周期T的交通流量数据集q;所述的固定周期T的交通流量数据集q={q(1),…,q(k),…,q(n)};q(k)表示k时间段的交通流量数据,其中所述的标准小时流量数据表示单位为车辆/小时的交通流量数据;(2)对步骤(1)得到的固定周期T的交通流量数据集q进行阈值筛选;所述预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列Xj=[xj(1),xj(2),...,xj(n)],xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:ρij(τ)'=ρij(τ)ρij(w);(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):ρ(t)=[ρj1(t) ρj2(t) ... ρjm(t)]其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为Xjm(t)=[xjm(1),xjm(2),...,xjm(n)],m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,
,则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:Y'=[y1'(t) y2'(t) ... yq'(t)」(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京新立讯科技股份有限公司,未经南京新立讯科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610523003.2/,转载请声明来源钻瓜专利网。