[发明专利]一种含索网结构的天线展开动力学分析方法有效
申请号: | 201610224604.3 | 申请日: | 2016-04-12 |
公开(公告)号: | CN105912781B | 公开(公告)日: | 2019-02-12 |
发明(设计)人: | 张逸群;杨东武;李申;张树新;杨癸庚;李娜;朱日升 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06F17/50 | 分类号: | G06F17/50 |
代理公司: | 西安吉盛专利代理有限责任公司 61108 | 代理人: | 张恒阳 |
地址: | 710071 陕西省*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种含索网结构的天线展开动力学分析方法,其步骤包括:1)选择天线桁架单元与索网的材料参数与几何参数、索网拓扑结构及索网节点初始位置;2)根据拉格朗日第二方程构建索网的动力学模型。3)构建天线桁架的动力学模型;4)构建桁架单元与索网的约束方程,建立天线整体动力学模型;5)求解动力学模型,得到运动形态及索网作用力。本发明能够对含索网结构的天线展开过程精确分析,得到索网形态的动态变化情况;能够精确得到展开过程索网作用力变化曲线,分析索网张力非线性因素对天线展开的影响,为可展开天线电机与控制系统设计提供基础,避免展开过程天线展开不稳定或不到位现象。 | ||
搜索关键词: | 一种 含索网 结构 天线 展开 动力学 分析 方法 | ||
【主权项】:
1.一种含索网结构的天线展开动力学分析方法,其特征是:包括如下步骤:步骤101:选择网状可展开天线桁架单元与索网的材料参数、几何参数、索网拓扑结构、索网节点的初始位置P;步骤102:根据拉格朗日第二方程,构建索网的动力学模型:
式中,q、
为选取的广义坐标及其对应的广义速度,t为时间,TE为系统的动能,UE为系统的弹性势能,Ug为系统的重力势能,Q为非保守力对应的广义力;步骤103:利用瑞丽‑里兹法对桁架单元进行离散,推导柔性桁架的动力学模型;步骤104:构建桁架单元与索网的约束方程,对索网与桁架的动力学模型进行组合;步骤105:基于Newmark方法对该模型进行求解,即可得到索网形态的运动过程与索网对桁架产生的作用力变化情况;所述的步骤102具体包括如下步骤:步骤201:由索网拓扑关系可得到任一索单元i,其两节点为j和k,其中节点j的位置坐标为Pj=[xj yj zj]T,节点k的位置坐标为Pk=[xk yk zk]T;描述索单元i的广义坐标为:qi=[xj yj zj xk yk zk]T (2)对应广义速度为:
则描述整个索网系统的广义坐标为:q=[xn yn zn]T,n=1,2,...,N (4)描述整个索网系统的广义速度为:
其中N为索网节点总数;T为矩阵转置符号;步骤202:将索单元i的均布质量Mi等效为两端点集中质量有:
设与任一节点k相连的单元编号为ci,相连的单元总数为cN,则节点k处的动能Tk为:
则索网系统的动能Tc为:
步骤203:通过比较索单元弦长与原长的关系,判断索单元是否处于张紧状态;若索单元弦长大于原长,索单元张紧,转到步骤204;若索单元弦长小于或等于原长,索单元松弛,转到步骤205;步骤204:索单元弦长大于原长,索单元张紧,其力学性态满足胡克定理;其中jk′为索单元发生弹性变形前状态,jk为悬链线单元受力后的张紧状态;此时,索单元弹性势能UEi可简化为:
Ljk2=(xj‑xk)2+(yj‑yk)2+(zj‑zk)2 (10)其中E为弹性模量,A为索单元截面积;单元重力势能Ugi为质心势能:
式中,g为重力加速度;直接转到步骤206;步骤205:索单元弦长小于或等于原长,索单元松弛,通过单元推导得到松弛索单元的弹性势能与重力势能;步骤206:索网系统的弹性势能为:
索网系统的重力势能为:
其中,Ne为索单元总数;步骤207:将索网广义坐标、动能、弹性势能、重力势能代入公式(1),得到索网的动力学模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610224604.3/,转载请声明来源钻瓜专利网。