[发明专利]基于多核学习与Boosting算法的蛋白质-DNA绑定位点预测方法在审
申请号: | 201610145079.6 | 申请日: | 2016-03-14 |
公开(公告)号: | CN105808975A | 公开(公告)日: | 2016-07-27 |
发明(设计)人: | 於东军;胡俊;李阳;沈红斌;杨静宇 | 申请(专利权)人: | 南京理工大学 |
主分类号: | G06F19/18 | 分类号: | G06F19/18 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 王培松 |
地址: | 210000 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于多核学习与Boosting算法的蛋白质‑DNA绑定位点预测方法,包括下列步骤:特征提取,抽取每个氨基酸残基的进化信息特征向量与溶剂可及性特征向量;特征融合,使用基于线性核的多核学习算法对上述两个特征向量的权重信息进行评估,并根据权重进行加权串行组合得到最终的样本特征向量;使用随机下采样技术对非绑定位点的样本进行多次下采样,将下采样得到的非绑定位点样本子集与绑定位点样本集合并后训练一个SVM,得到多个SVM预测模型;使用Boosting提升算法将上述多个SVM模型进行集成,形成一个最终的预测模型。该方法提升了模型的可解释性并有效的降低训练集的规模,而且也提高了模型的预测精度。 | ||
搜索关键词: | 基于 多核 学习 boosting 算法 蛋白质 dna 定位 预测 方法 | ||
【主权项】:
一种基于多核学习与Boosting算法的蛋白质‑DNA绑定位点预测方法,其特征在于,包括以下步骤:步骤1:特征提取,使用PSI‑BLAST与SANN程序分别提取蛋白质序列的进化信息特征和溶剂可及性特征,在此基础上使用滑动窗口技术构建每一个氨基酸残基的特征向量,每个残基有两个对应着两种不同的信息来源的特征向量;步骤2:特征融合,使用基于线性核的多核学习算法对上述步骤1中的两个特征向量进行评估,得到相应的权重信息,并根据权重进行加权串行组合得到最终的样本特征向量;步骤3:使用随机下采样技术,对非绑定位点残基进行多次下采样,得到多个非绑定位点样本子集,将每一个非绑定位点样本子集与绑定位点样本集合并后训练一个SVM预测模型,得到多个SVM预测模型;以及步骤4:使用Boosting提升算法,将步骤3中得到的多个SVM预测模型进行集成,得到最终的蛋白质‑DNA绑定位点预测模型,用于预测样本是否为DNA绑定位点;步骤5、对于待预测蛋白质序列,采用所述步骤1的方式进行特征提取和步骤2的方式进行特征融合,然后输入步骤4中所最终得到的蛋白质‑DNA绑定位点预测模型,预测出蛋白质‑DNA绑定位点。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610145079.6/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用