[发明专利]基于改进RBF网络的风电机组超短期风功率预测方法有效

专利信息
申请号: 201610109989.9 申请日: 2016-02-26
公开(公告)号: CN105787592A 公开(公告)日: 2016-07-20
发明(设计)人: 许昌;魏媛;李涛;蒋泽阳;雷鸣;赵青 申请(专利权)人: 河海大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/08
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 柏尚春
地址: 210000 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于改进RBF网络的风电机组超短期风功率预测方法,采用风电机组运行统计资料,合理选择对风功率输出有着密切影响的参数,如前一段时间的风速、风向、桨距角、风功率等物理量,使用人工神经网络——径向基函数网络(RBF)建立相关参数与风功率输出对应关系的模型;采用改进RBF网络方法对该模型进行修改,判断当前隐含层节点数是否满足精度要求,判断某个隐含层节点的输出在连续一段的学习中是否均小于某一值,实时在线修改隐含层节点个数,随预测进行不断增加新的学习样本,这种风功率预测方法精度高、速度快。
搜索关键词: 基于 改进 rbf 网络 机组 短期 功率 预测 方法
【主权项】:
一种基于改进RBF网络的风电机组超短期风功率预测方法,其特征在于:采用风电机组运行数据通过改进RBF网络在线实时预测风电机组功率的方法,具体步骤为:步骤1,从风电场获取风电机组SCADA中储存的长时期历史数据,对相关数据进行预处理,包括缺失数据的补全、数据的归一化处理等;步骤2,采用径向基函数人工神经网络建立相关参数对风功率的预测模型,选取前v个时刻若干相关参数历史数据,对后u个时刻的风功率进行滚动预测;步骤3,采用RBF网络改进模型对预测模型进行修正,在精度要求的前提下,判断是否需要增减隐含层节点的个数,相应调整隐含层节点参数和权值,实现对网络的训练;步骤4,预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610109989.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top