[发明专利]一种基于线性最小均方误差估计的SAR图像降噪方法在审

专利信息
申请号: 201510311551.4 申请日: 2015-06-09
公开(公告)号: CN104978716A 公开(公告)日: 2015-10-14
发明(设计)人: 刘书君;吴国庆;张新征;杨婷;徐礼培 申请(专利权)人: 重庆大学
主分类号: G06T5/00 分类号: G06T5/00;G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 400044 *** 国省代码: 重庆;85
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于线性最小均方误差估计的SAR图像降噪方法。属于数字图像处理技术领域。它是一种将图像非局部相似性与稀疏表示相结合的SAR图像降噪方法。首先通过Kmeans聚类法将相似图像块聚类;再对相似块集合做奇异值分解,得到包含行列相关信息的含噪奇异值系数。为使降噪后奇异值系数更好的逼近真实系数,利用线性最小均方误差准则估计奇异值系数。接着将估计后的奇异值系数重构得到初始降噪图像块,结合初始降噪结果重新对含噪图像块进行聚类降噪,并将降噪后图像块重构得到最终降噪图像。本发明不仅去噪效果明显且能够有效的保持图像纹理细节,还具有良好的视觉效果,可用于SAR图像降噪。
搜索关键词: 一种 基于 线性 最小 误差 估计 sar 图像 方法
【主权项】:
一种基于线性最小均方误差估计的SAR图像降噪方法,其特征在于具体步骤如下:步骤一、相似图像块聚类图像中结构存在大量非局部相似信息,利用这些相似信息对图像块进行降噪不仅去噪效果明显,同时有利于保护图像的纹理细节,为了利用图像的非本地相似信息,对于含噪图像块,首先通过Kmeans聚类方法将含有相似真实信息的图像块聚类,并采用基于统计估计的相似块评价代替基于欧氏距离的相似块评价来进一步提高相似块聚类精度;步骤二、基于局部稀疏与非局部稀疏相结合的降噪模型为对图像块集合X=[x1,x2,…,xm]局部稀疏表示,将X表示为字典左乘系数:X=D[α12,…,αm]其中D为字典,[α12,…,αm]为[x1,x2,…xm]的系数集合;当X中图像块为相似图像块时,实现了X的非局部稀疏,进一步将[α12,…,αm]表示为字典右乘系数:[α12,…,αm]=ΣΦT其中ΦT为右乘字典,Σ=diag{γ12,…γk}为稀疏表示系数,当同时对相似图像块集合进行局部稀疏与非局部稀疏表示时,X可表示为:X=DΣΦT其中稀疏表示系数Σ同时包含X的行相关信息和列相关信息;因此,利用图像的非局部相似性,将局部稀疏与非局部稀疏结合的降噪模型为:<mrow><mover><mi>&Sigma;</mi><mo>^</mo></mover><mo>=</mo><munder><mrow><mi>arg</mi><mtext> </mtext><mi>min</mi></mrow><msub><mi>&gamma;</mi><mi>i</mi></msub></munder><msubsup><mrow><mo>||</mo><mrow><mi>Y</mi><mo>-</mo><msup><mi>D&Sigma;&Phi;</mi><mi>T</mi></msup></mrow><mo>||</mo></mrow><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><mi>&lambda;</mi><msubsup><mo>&Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msub><mi>&gamma;</mi><mi>i</mi></msub></mrow>其中Y表示含噪相似图像块集合,为估计后系数;步骤三、变换域奇异值系数线性最小均方误差估计为求解降噪模型,首先将SAR图像的乘性相干斑噪声转化为加性噪声,然后对含噪相似图像块集合Y进行SVD分解,对应的奇异值系数可表示为:ΣY=ΣXW其中ΣY,ΣX分别表示含噪奇异值系数和真实信号奇异值系数,ΣW表示加性噪声;采用线性最小均方误差准则对真实信号的奇异值系数进行估计:<mrow><msub><mover><mi>&Sigma;</mi><mo>^</mo></mover><mi>X</mi></msub><mo>=</mo><mi>E</mi><mo>&lsqb;</mo><msub><mi>&Sigma;</mi><mi>X</mi></msub><mo>&rsqb;</mo><mo>+</mo><mi>C</mi><mi>o</mi><mi>v</mi><mrow><mo>(</mo><msub><mi>&Sigma;</mi><mi>X</mi></msub><mo>,</mo><msub><mi>&Sigma;</mi><mi>Y</mi></msub><mo>)</mo></mrow><mi>C</mi><mi>o</mi><mi>v</mi><msup><mrow><mo>(</mo><msub><mi>&Sigma;</mi><mi>Y</mi></msub><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><msub><mi>&Sigma;</mi><mi>Y</mi></msub><mo>-</mo><mi>E</mi><mo>&lsqb;</mo><msub><mi>&Sigma;</mi><mi>Y</mi></msub><mo>&rsqb;</mo><mo>)</mo></mrow></mrow>其中E[·]表示期望,Cov(ΣY)表示ΣY的协方差矩阵,Cov(ΣXY)表示ΣX与ΣY的互协方差矩阵;将估计系数重构得到初始降噪图像块,在初始降噪的基础上重新对含噪图像块聚类与降噪,并将降噪后图像块重构得到最终图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510311551.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top