[发明专利]一种基于联合非负矩阵分解的个性化产品推荐方法无效
申请号: | 201310439089.7 | 申请日: | 2013-09-24 |
公开(公告)号: | CN103559623A | 公开(公告)日: | 2014-02-05 |
发明(设计)人: | 王灿;王哲;李平;卜佳俊;陈纯;何占盈 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06Q30/02 | 分类号: | G06Q30/02 |
代理公司: | 杭州天正专利事务所有限公司 33201 | 代理人: | 王兵;黄美娟 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于联合非负矩阵分解的个性化产品推荐方法,从互联网中抓取数据信息,包括用户对已购买产品的评分、用户之间的好友关系,用户对于已购买产品的文字评价;将数据信息转化成数据矩阵,每一个用户的数据信息是其中的一个行向量;利用联合非负矩阵分解的方法,将原始数据矩阵分解成多个低维空间下的数据矩阵;根据低维空间下的数据矩阵,估算每一个用户对于所有未购买产品的评分,按照评分高低进行产品推荐。本方法的优点在于综合考虑了社交网络中的用户结构关系和产品评价信息,解决了传统方法不能有效处理新用户的问题,对没有购买过任何产品的新用户进行有效的产品推荐。 | ||
搜索关键词: | 一种 基于 联合 矩阵 分解 个性化 产品 推荐 方法 | ||
【主权项】:
一种基于联合非负矩阵分解的个性化产品推荐方法,该方法的特征在于: 1)从互联网中抓取数据信息,包括用户对已购买产品的评分、用户之间的好友关系,用户对于已购买产品的文字评价; 2)将数据信息转化成数据矩阵,每一个用户的数据信息是其中的一个行向量; 3)利用联合非负矩阵分解的方法,将原始数据矩阵分解成多个低维空间下的数据矩阵; 4)根据低维空间下的数据矩阵,估算每一个用户对于所有未购买产品的评分,按照评分高低进行产品推荐。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310439089.7/,转载请声明来源钻瓜专利网。