[发明专利]基于增量朴素贝叶斯网多分类器集成方法有效

专利信息
申请号: 200810050425.8 申请日: 2008-02-29
公开(公告)号: CN101251851A 公开(公告)日: 2008-08-27
发明(设计)人: 刘大有;关菁华;黄晶;齐红 申请(专利权)人: 吉林大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 吉林长春新纪元专利代理有限责任公司 代理人: 余岩
地址: 130012吉*** 国省代码: 吉林;22
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于增量朴素贝叶斯网多分类器集成方法,包括初始化集成分类器及各主要参数;如果没有新数据,结束;使用当前集成分类器预测新数据项的类别;动态更新所有个体分类器的参数值;更新所有个体分类器的权重;如果当前集成分类器对新数据的类别预测不发生错误,则使用新数据项训练集成分类器中的所有个体分类器;根据KL剪枝策略删除冗余个体分类器;增加一个新个体分类器;使用新数据项训练所有个体分类器。本发明能有效改善发生概念漂移时的分类预测结果。此方法特别适合于处理概念漂移问题。
搜索关键词: 基于 增量 朴素 贝叶斯网多 分类 集成 方法
【主权项】:
1、一种基于增量朴素贝叶斯网多分类器集成方法,其特征在于包括下列步骤:初始化集成分类器及各主要参数;如果没有新数据,结束;使用当前集成分类器预测新数据项的类别;动态更新所有个体分类器的参数值;更新所有个体分类器的权重;如果当前集成分类器对新数据的类别预测不发生错误,则使用新数据项训练集成分类器中的所有个体分类器;根据KL剪枝策略删除冗余个体分类器;增加一个新个体分类器;使用新数据项训练所有个体分类器。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/200810050425.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top